Suction Cup

2.5-Stage Bellows Type

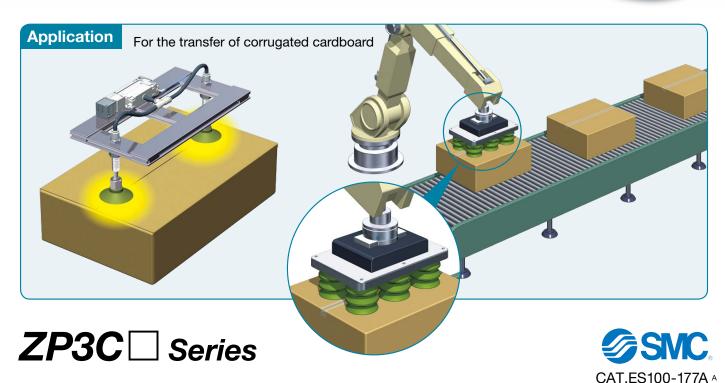
Flat Type with Ribs | Bellows Type | Ø20, Ø25, Ø32, Ø40, Ø50 Ø20, Ø25, Ø32, Ø40, Ø50

Suitable for the adsorption transfer of corrugated cardboard, etc., requiring abrasion resistance

Sizes ø20 and ø25 have been added for the 2.5-stage bellows type. p. 17

Material: FS61 (Fluoro-based rubber) improves abrasion resistance

* More than 4 times the abrasion resistance of SMC's urethane suction cups


Reduced suction of foreign matter, such as paper particles, due to mesh filter p. 1

Can be replaced without tools

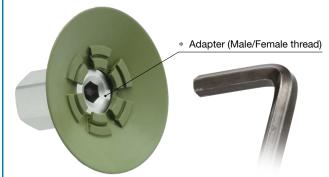
2.5-stage bellows type p.1

Optional inner ring and retainer

Suction Cup ZP3C ☐ Series

Reduced suction of foreign matter due to mesh filter

- Reduced suction of foreign matter into the vacuum pump and ejector
- The cup and mesh filter can be replaced without tools.

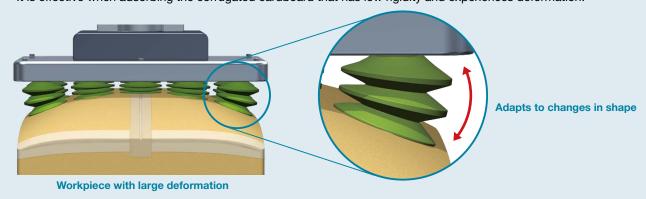


The separation and disposal of the metal and rubber parts is possible.

Compatible with 2 types of mounting tools

Mounting with a hexagon wrench

Mounting with a standard wrench

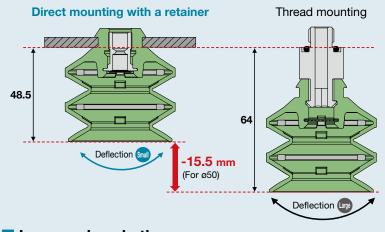

2.5-Stage Bellows Type

The large stroke is suitable for workpieces with:

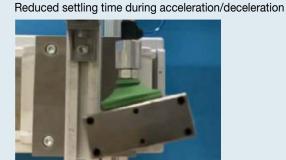
- Differences in height
- Steps
- Inclined surfaces
- Soft workpieces requiring cushioning

Adapts to changes in shape after adsorption

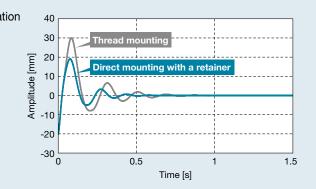
It is effective when adsorbing the corrugated cardboard that has low rigidity and experiences deformation.



2.5-Stage Bellows Type (The maximum load when a workpiece is Optional inner ring Removal force forcibly removed from the adsorption state.) 100 Adding the optional inner rings improves 80 the removal force and adsorption inner ring performance on uneven surfaces. 40 Elongation Inner ring 20 amount 0 10 20 30 40 60 Elongation amount [mm] For size ø50 Load When adsorbing on a dry, flat, and smooth plane surface at -60 kPa of vacuum pressure With retainer Direct installation without tools Plate with holes Multiple mounting examples Retainer


■ Reduced height: space saving and reduces deflection of the workpiece during transfer.

Mounting hole,


Mounting state

■ Improved cycle time

Insert the cup into the mounting hole by pushing in the retainer

Variations

Flat Type with Ribs, Bellows Type

	Туре	Vacuum inlet	Connection			
Mounting			Time	Cup diameter		Vacuum inlet
		direction	Туре	ø 20, ø 25, ø 32	ø 40, ø 50	
With adapter	Thread mounting	Vertical	Male thread	M8 x 1	M10 x 1	Use the connection thread.
				G1/8	G1/4	
			Female thread	G1/8	G1/4	
With buffer	Plate	Vertical	Male thread	M14 x 1	M18 x 1.5	Rc1/8
	mounting	Lateral	iviale tilleau	1 W114 X 1	IVITO X 1.5	M5 x 0.8

2.5-Stage Bellows Type

J	Туре	Vacuum inlet direction	Connection			
Mounting			Туре	Cup diameter		Vacuum inlet
				ø 20, ø 25, ø 32	ø 40, ø 50	
With adapter			Mada Harrad	M8 x 1	M10 x 1	
	Thread mounting	Vertical	Male thread	G1/8	G1/4	Use the connection thread.
			Female thread	G1/8	G1/4	
With buffer	Plate mounting	Vertical	Male thread	M14 x 1	M18 x 1.5	Rc1/8
		Lateral	iviale tilleau	WIT4 X T		M5 x 0.8
With retainer	Direct mounting	_	Direct mounting onto the plate	Mounting hole dia.: ø13.5 Plate thickness t: 3.0	Mounting hole dia.: ø20.5 Plate thickness t: 3.0	_

CONTENTS

Suction Cup

Flat Typ	e with	Ribs
----------	--------	------

Bellows Type

ZP3C Series

● Flat Type with Ribs, Bellows Type

How to Order ···· p. 5
Specifications p. 6
Dimensions p. 7
Construction p. 14
Mounting Bracket Assembly p. 15

2.5-Stage Bellows Type

ZP3C2 Series

2.5-Stage Bellows Type

How to Order ·····	····· p. 17
Specifications	p. 18
Dimensions	p. 19
Construction ·····	p. 23
Mounting Bracket Assembly	p. 24

Suction Cup

Flat Type with Ribs Bellows Type

Flat type with ribs

Cup unit

ZP3C-

20 C FS

Bellows type

With adapter

ZP3C-T 20 C FS

With buffer

T 20 C FS JB 10 - MF

Cup material: FS61

Vacuum inlet direction

Nil	Cup unit
T	Vertical
Y *1	Lateral

*1 Only selectable for the type with a

Q Cup diameter

<u> </u>	
20	ø20
25	ø25
32	ø32
40	ø40
50	ø50

R Cup form

Oup form			
С	Flat type with ribs		
В	Bellows type		

4 Buffer specifications

	<u> </u>
JB	Rotating, With bushing

5 Buffer stroke

5

Stroke	Cup diameter [mm]		
[mm]	ø 20 to ø 32	ø 40, ø 50	
10	•	•	
20	•	_	
30	•	•	
50	_	•	

6 Mesh filter

Nil	Without mesh filter
MF	With mesh filter

Connection thread

Туре	Thread	Symbol	Size	Cup diameter [mm]	
	mread			ø 20 to ø 32	ø 40, ø 50
Thread mounting	Male thread	A8	M8 x 1	•	_
		A10	M10 x 1	_	•
		AG01	G1/8	•	_
		AG02	G1/4	_	•
	Female thread	BG01	G1/8	•	_
		BG02	G1/4	_	•

^{*} Use the connection thread for the vacuum inlet.

Specifications

Material Specifications

Material	FS61 (Fluoro-based rubber)
Color of rubber	Green
Rubber hardness (Shore A: ±5°)	65
Operating temperature range*1	0°C to 200°C
Ambient temperature	0°C to 150°C

^{*1} Surface temperature of the workpiece to be adsorbed

Cup Specifications

Form	Cup diameter	Effective adsorption area [cm²]	Adsorption force*1 [N]	Removal force*2 [N]	Internal capacity [cm ³]
	ø 20	1.7	10.0	18.3	1.0
	ø 25	2.0	11.8	25	1.3
Flat type with ribs	ø 32	2.3	13.9	34.6	1.7
	ø 40	6.1	36.7	58.2	4.3
	ø 50	7.1	42.4	79.4	6.9
	ø 20	2.3	13.7	17	3.1
	ø 25	2.8	16.6	25.9	5.4
Bellows type	ø 32	3.0	17.9	30.4	8.0
	ø 40	4.7	27.9	47	17.7
	ø 50	6.5	39.3	69.6	26.8

Adapter Specifications

Connection	Male t	hread	Female	thread
Cup diameter	ø 20 to ø 32	ø 40, ø 50	ø 20 to ø 32	ø 40, ø 50
Connection thread	M8 x 1 G1/8	M10 x 1 G1/4	G1/8	G1/4
Vacuum inlet		Use the conn	ection thread.	

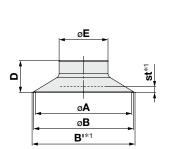
Buffer Specifications

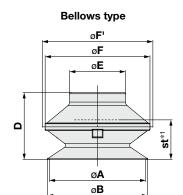
Cup d	liameter		ø 20 to ø 32			ø 40, ø 50	
Non-rotating sp	ecification			JB: Rotating,	With bushing		
Stroke		10	20	30	10	30	50
Connection thre	ead		M14 x 1			M18 x 1.5	
Spring reaction	At 0 stroke		3.0			5.0	
force [N]	At full stroke	4.5	5.0	5.2	6.5	8.5	10.5

Mesh Filter Specifications

moon into opcomous	
Mesh filter	60
Opening	250 μm

^{*1} The adsorption force is a theoretical value calculated by: effective adsorption area x vacuum pressure (-60 [kPa]).
*2 The removal force is a measured value when adsorbing on a dry, flat, and smooth surface at -60 kPa of vacuum pressure.


ZP3C Series

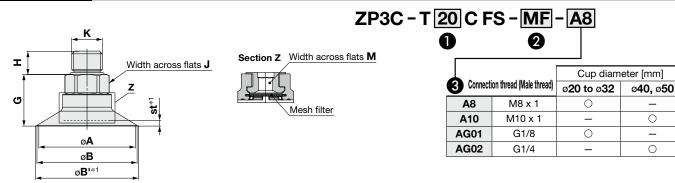

Dimensions

Single unit

ZP3C - 20 C FS **0 2**

Flat type with ribs

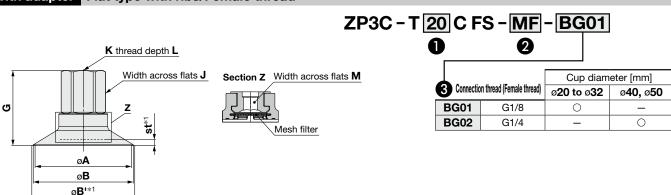
	Mode	l										
	Oup diameter	2 Cup form	Cup material	A	В	B ¹ *1	D	E	F	F ¹ *1	st*1	Weight [g]
	20			21.4	23	23.3	10		_	_	2	2.2
	25			26.4	28	28.4	10	15	_	_	2	2.7
	32	С		31.4	33	33.5	11		_	_	2.5	3.5
	40			41.4	43	44.2	13.7	21	_	_	2.5	7.9
ZP3C	50		FS	51.4	52.7	53.9	14.7	21	_	_	3.5	11.6
ZPSC	20		го	21.4	23	_	17	15	24	26	8	3.6
	25			26.4	28	_	20	17	29	31	11	5.7
	32	В		31.4	33	_	21.8] 17	35	37	12.8	8.4
	40			41.4	43	_	28.7	24	45	47.5	16	17.7
	50			51.4	53	_	30.7	25	55	57.5	18	26.6


^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

0

0

Dimensions


With adapter Flat type with ribs/Male thread

			Model														
	Vacuum inlet direction	Oup diameter	Cup form	Cup material	2 Mesh filter	3 Connection thread	A	В	B'*1	G	н	J	К	M	st*1	Min. hole diameter	*2 Weight [g]
		20					21.4	23	23.3	20					2		7.7
		25				A8	26.4	28	28.4	20		14	M8 x 1	4		4	8.1
		32					31.4	33	33.5	21	6.5				2.5		8.9
		40				A10	41.4	43	44.2	22.2		17	M10 x 1	6	2.5	- 6	16.2
ZP3C	т	50	С	FS	Nil	AIU	51.4	52.7	53.9	23.2		17	IVIIUXI	O	3.5	U	19.9
ZPSC	•	20	U	l L2	MF		21.4	23	23.3	17					2		7.0
		25				AG01	26.4	28	28.4	17	7.5	14	G1/8	4		4	7.4
		32					31.4	33	33.5	18					2.5		8.2
		40				AG02	41.4	43	44.2	22.2	10	17	G1/4	6	2.5	7.1	17.7
		50				AGUZ	51.4	52.7	53.9	23.2	10	17	G1/4		3.5	7.1	21.5

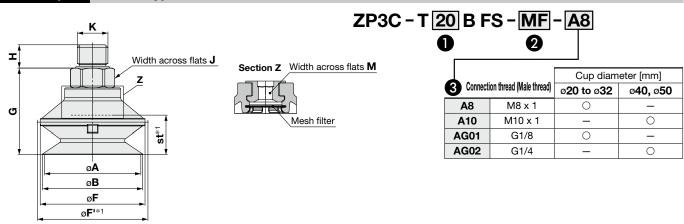
^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

With adapter Flat type with ribs/Female thread

			Model														
	Vacuum inlet direction	Oup diameter	Cup form	Cup material	2 Mesh filter	3 Connection thread	A	В	B ^{1*1}	G	J	К	L	М	st*1	Min. hole diameter	*2 Weight [g]
		20					21.4	23	23.3	24.5					2		7.9
		25			NI:I	BG01	26.4	28	28.4	24.5	14	G1/8	7.4	4	2	4	8.4
ZP3C	Т	32	С	FS	Nil MF		31.4	33	33.5	25.5					2.5	1	9.2
		40			IVII	BG02	41.4	43	44.2	32.2	17	G1/4	11	6	2.5	7.1	18.4
		50				BG02	51.4	52.7	53.9	33.2	17	G1/4	11	6	3.5	7.1	22.1

^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

^{*2} This does not include the weight of the mesh filter. For the type with a mesh filter, add the weight of the parts separately. (Refer to page 14.)



^{*2} This does not include the weight of the mesh filter. For the type with a mesh filter, add the weight of the parts separately. (Refer to page 14.)

ZP3C Series

Dimensions

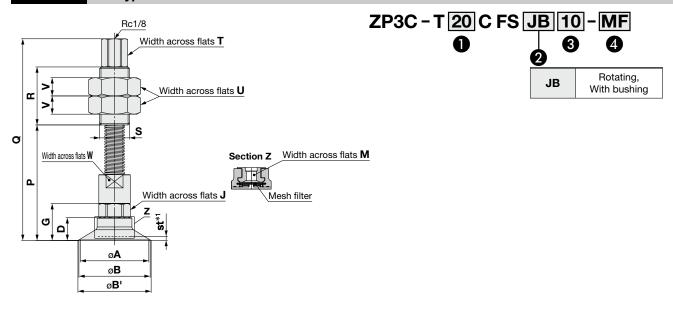
With adapter Bellows type/Male thread

			Model															
	Vacuum inlet direction	Cup diameter	Cup	Cup material	2 Mesh filter	3 Connection thread	A	В	F	F*1	G	Н	J	К	М	st*1	Min. hole diameter	*2 Weight [g]
		20					21.4	23	24	26	27					8		9.1
		25				A8	26.4	28	29	31	30		14	M8 x 1	4	11	4	11.1
		32					31.4	33	35	37	31.8	6.5				12.8		13.8
		40				A10	41.4	43	45	47.5	37.2		17	M10 x 1	6	16	6	25.9
ZP3C	т	50	В	FS	Nil	AIU	51.4	53	55	57.5	39.2		17	IVITOXI	O	18	0	34.9
ZPSC		20	ь	5	MF		21.4	23	24	26	24					8		8.4
		25				AG01	26.4	28	29	31	27	7.5	14	G1/8	4	11	4	10.4
		32					31.4	33	35	37	28.8					12.8		13.1
		40				AG02	41.4	43	45	47.5	37.2	10	17	G1/4	6	16	7.1	27.5
		50				AGUZ	51.4	53	55	57.5	39.2	10	17	G 1/4	U	18	/.1	36.4

- *1 Achieved vacuum pressure: Reference at -85 [kPa]
- *2 This does not include the weight of the mesh filter. For the type with a mesh filter, add the weight of the parts separately. (Refer to page 14.)

With adapter Bellows type/Female thread **ZP3C-T20BFS-MF-BG01** ${\bf K}$ thread depth ${\bf L}$ Width across flats J Section Z Width across flats M Cup diameter [mm] Connection thread (Female thread) ø**20 to** ø**32** ø**40,** ø**50** G BG01 G1/8 0 Mesh filter BG02 G1/4 0 st* øΑ

		Model															
Vacuum inlet direction	Cup diameter	Cup form	Cup material	2 Mesh filter	Connection thread	A	В	F	F*1	G	J	К	L	М	st*1	Min. hole diameter	*2 Weight [g]
	20					21.4	23	24	26	31.5					8		9.3
	25			A.:.	BG01	26.4	28	29	31	34.5	14	G1/8	7.4	4	11	4	11.4
Т	32	В	FS			31.4	33	35	37	36.3					12.8		14.1
	40			IAIL	PCO2	41.4	43	45	47.5	47.2	17	G1/4	11	6	16	7.1	28.2
	50				BG02	51.4	53	55	57.5	49.2	17	G 1/4	' '	U	18] '.'	37.1
	inlet	inlet direction diameter 20 25 T 32 40	Vacuum inlet direction Cup diameter Cup form 20 25 32 B 40 40 B B	Vacuum inlet direction Cup diameter Cup form Cup material 20 25 32 B FS	Vacuum inlet Cup Cup diameter form Cup material filter 20 25 32 40 Equation Cup form Cup material filter Reshaus FS Nil MF	Vacuum inlet Cup Cup diameter form Cup material Filter Connection thread 20 25 T 32 40 RG02	Vacuum inlet direction Cup diameter Cup form Cup material Cup filter Connection thread 20 25 Nil MF BG01 26.4 31.4 41.4	Vacuum inlet olirection Cup diameter of porm Cup material Cup filter Connection filter A B 20 25 B FS Nil MF BG01 26.4 28 31.4 33 40 BG02 41.4 43	Vacuum inlet direction Cup diameter Cup form Cup material Mesh filter Connection thread A B F 20 25 32 40 Nil MF BG01 21.4 23 24 26.4 28 29 31.4 33 35 31.4 33 35 35 40 41.4 43 45	Vacuum inlet direction Cup diameter Cup form Cup material Question filter Connection thread A B F F*1 20 25 32 B FS Nil MF BG01 26.4 28 29 31 31.4 33 35 37 BG02 41.4 43 45 47.5	Vacuum inlet direction Cup diameter Cup form Cup material Question filter A B F F*1 G 20 25 32 40 B FS Nil MF BG01 26.4 28 29 31 34.5 31.4 33 35 37 36.3 BG01 A BG02 41.4 43 45 47.5 47.2	Vacuum inlet direction Cup diameter Cup form Cup material Question filter A B F F*1 G J 20 25 32 40 26.4 28 29 31 34.5 14 31.4 33 35 37 36.3 31.4 43 45 47.5 47.2 17	Vacuum Cup Cup Cup Mesh Filter Mil Mile Mile	Vacuum inlet olirection Cup diameter Cup form Cup material Mesh filter Connection thread A B F F*1 G J K L 20 25 32 40 BG01 26.4 28 29 31 34.5 14 G1/8 7.4 8002 40 41.4 43 45 47.5 47.2 17 G1/4 11	Vacuum 1	Vacuum 1	Vacuum Cup Cup Cup Mesh Miller Mil


^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

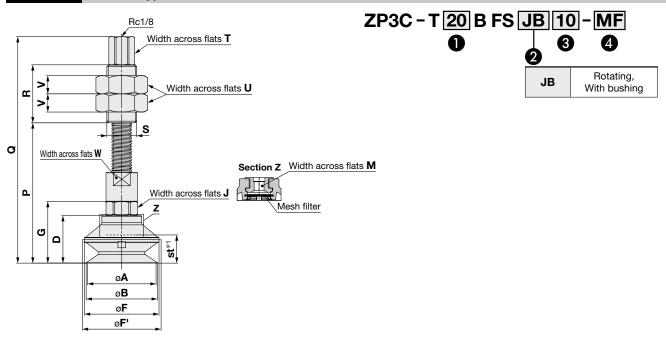
ø**B** ø**F** ø**F**'*1

^{*2} This does not include the weight of the mesh filter. For the type with a mesh filter, add the weight of the parts separately. (Refer to page 14.)

Dimensions

With buffer Flat type with ribs/Vacuum inlet direction: Vertical

			Mod	del																					
	Vacuum inlet direction	Oup diameter		Cup material				A	В	B ^{1*1}	D	G	J	М	Р	Q	R	S	т	U	v	w	st*1	Min. hole dia.	*2 Weight [g]
						10									66	111									81.2
		20				20		21.4	23	23.3					78	123									85.5
						30					10	20			91	136							2		90.3
						10					10	20			66	111							_		81.6
		25				20		26.4	28	28.4			14	4	78	123	30	M14 x 1	12	19	4	13			86.0
						30									91	136									90.7
						10	Nil								67	112									82.4
ZP3C	Т .	32	С	FS	JB	20	MF	31.4	33	33.5	11	21			79	124								3	86.8
						30								Ш	92	137							2.5		91.5
						10									69.7	121.7							2.5		207.2
		40				30		41.4	43	44.2	13.7	22.2			94.7	146.7									221.7
						50							17	6	114.7	166.7	35	M18 x 1.5	14	27	11	16]	233.2
						10							''		70.7	122.7		W110 X 1.0	1-7	- '	' '	10			210.9
		50				30		51.4	52.7	53.9	14.7	23.2			95.7	147.7							3.5		222.5
						50									115.7	167.7									236.9

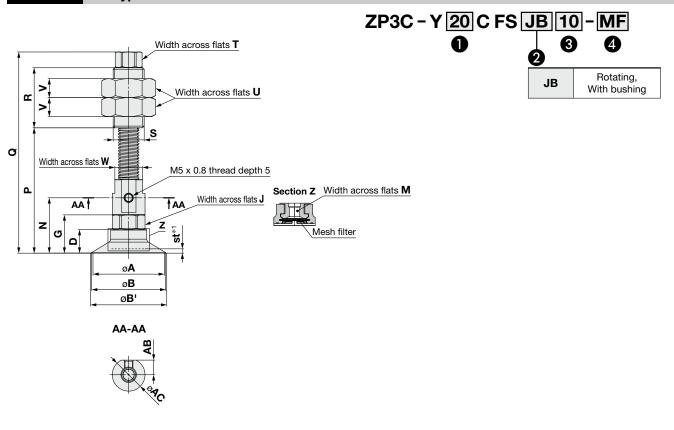

^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

^{*2} This does not include the weight of the mesh filter. For the type with a mesh filter, add the weight of the parts separately. (Refer to page 14.)

ZP3C Series

Dimensions

With buffer Bellows type/Vacuum inlet direction: Vertical



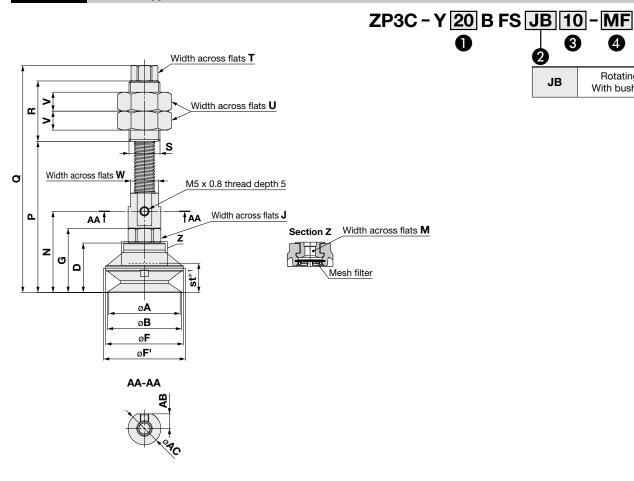
			Mod	del																						
	Vacuum inlet direction	Cup		Cup material		3 Buffer stroke	4 Mesh filter	A	В	D	F	F'*1	G	J	М	Р	Q	R	s	т	U	v	w		Min. hole dia.	*2 Weight [g]
						10										73	118									82.5
		20				20		21.4	23	17	24	26	27			85	130							8		86.9
						30										98	143									91.7
						10										76	121									84.6
		25				20		26.4	28	20	29	31	30	14	4	88	133	30	M14 x 1	12	19	4	13	11		89.0
						30										101	146									93.7
						10	NI:I									77.8	122.8									87.3
ZP3C	Т .	32	В	FS	JB	20	Nil MF	31.4	33	21.8	35	37	31.8			89.8	134.8							12.8	3	91.7
						30										102.8	147.8									96.4
						10										84.7	136.7									217.0
		40				30		41.4	43	28.7	45	47.5	37.2			109.7	161.7							16		231.5
						50								17	ا ا	129.7	181.7	35	M18 x 1.5	14	27	11	16			242.9
						10								' '	0	86.7	138.7	33	C.1 X 011W1	14	21	' '	10			225.9
		50				30		51.4	53	30.7	55	57.5	39.2			111.7	163.7							18		240.4
						50										131.7	183.7									251.8

^{*1} Achieved vacuum pressure: Reference at -85 [kPa]
*2 This does not include the weight of the mesh filter. For the type with a mesh filter, add the weight of the parts separately. (Refer to page 14.)

Dimensions

With buffer Flat type with ribs/Vacuum inlet direction: Lateral

			Mod	del																								
	Vacuum inlet direction	Cup		Cup material				A	В	B ^{*1}	D	G	J	М	N	P	Q	R	s	т	U	V	w	ΑВ	AC	st*1	Min. hole dia.	Weight
						10										66	104											81.7
		20				20		21.4	23	23.3						78	116											86.7
						30					10	20			29	91	129									2		92.2
						10					10	20			20	66	104									_		82.1
		25				20		26.4	28	28.4			14	4		78	116	30	M14 x 1	12	19	4	14	6.5	15		4	87.1
						30										91	129											92.6
						10	Nil									67	105											82.9
ZP3C	Y	32	С	FS	JB	20	MF	31.4	33	33.5	11	21			30	79	117											87.9
						30										92	130									2.5		93.4
						10										72.7	116.7									2.0		205.6
		40				30		41.4	43	44.2	13.7	22.2			32.1	97.7	141.7											221.5
						50							17	6		117.7	161.7	35	M18 x 1.5	14	27	11	16	8.5	19		6	234.0
						10							' '			73.7	117.7		1.0 X 1.0	' -	-'	' '	'	0.0	'			209.3
		50				30		51.4	52.7	53.9	14.7	23.2		3	33.1	98.7	142.7									3.5		225.2
						50										118.7	162.7											237.8


^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

^{*2} This does not include the weight of the mesh filter. For the type with a mesh filter, add the weight of the parts separately. (Refer to page 14.)

ZP3C Series

Dimensions

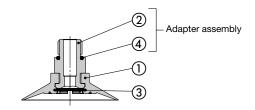
With buffer Bellows type/Vacuum inlet direction: Lateral

			Mod	del																									
	Vacuum inlet direction	Cup	Cup	Cup				A	В	D	F	F'*1	G	J	М	N	Р	Q	R	S	т	U	v	w	ΑВ	AC		Min. hole dia.	*2 Weight [g]
						10											73	111											83.0
		20				20		21.4	23	17	24	26	27			36	85	123									8		88.1
						30											98	136											93.5
						10											76	114											85.1
		25				20		26.4	28	20	29	31	30	14	4	39		126	30	M14 x 1	12	19	4	14	6.5	15	11	4	90.1
						30											101	139											95.6
						10	Nil										77.8	115.8											87.8
ZP3C	Y	32	В	FS	JB	20	MF	31.4	33	21.8	35	37	31.8			40.8	89.8	127.8									12.8		92.8
						30												140.8											98.3
						10												131.7											215.4
		40				30		41.4	43	28.7	45	47.5	37.2			47.1		_									16		231.2
						50								17	6			176.7	35	M18 x 1.5	14	27	11	16	8.5	19		h	243.8
						10												133.7											224.3
		50				30		51.4	53	30.7	55	57.5	39.2			49.1	114.7	158.7									18		240.2
						50											134.7	178.7											252.7

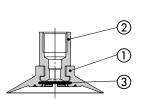
Rotating,

With bushing

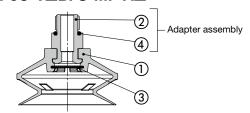
JB

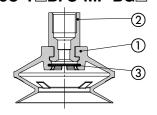

^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

^{*2} This does not include the weight of the mesh filter. For the type with a mesh filter, add the weight of the parts separately. (Refer to page 14.)


Suction Cup ZP3C Series Construction

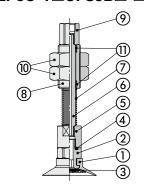
With adapter


ZP3C-T□**CFS-MF-A**□

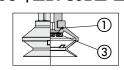

ZP3C-T□**CFS-MF-BG**□

ZP3C-T□**BFS-MF-A**□

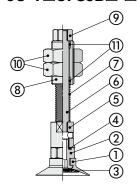
ZP3C-T□**BFS-MF-BG**□



Component Parts


• • • • • • • • • • • • • • • • • • • •			
No.	Description	Material	Note
1	Cup	FS61 (Fluoro-based rubber)	Color: Green
2	Adapter	Aluminum alloy (Clear anodized)	
3	Mesh filter	Stainless steel	With mesh filter
4	O-ring	NBR	

With buffer


ZP3C-T□**CFSJB**□-□

 $ZP3C-^{T}_{Y}\square BFSJB\square-\square$

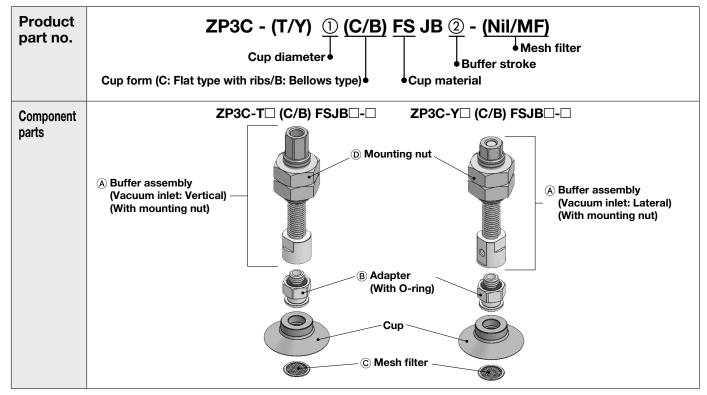
ZP3C-Y□**CFSJB**□-□

Component Parts

COII	iponent Parts		
No.	Description	Material	Note
1	Cup	FS61 (Fluoro-based rubber)	Color: Green
2	Adapter	Aluminum alloy (Clear anodized)	
3	Mesh filter	Stainless steel	With mesh filter
4	O-ring	NBR	
5	Adapter	Aluminum alloy (Clear anodized)	
6	Piston rod	Structural steel (Hard chrome plating)	
7	Return spring	Stainless steel	
8	Buffer body	Brass (Electroless nickel plating)	
9	Buffer adapter	Brass (Electroless nickel plating)	
10	Nut	Steel (Zinc chromated)	
11	Bushing	_	

Replacement Parts Mesh Filter Unit

Part number	Applicable cup dia.	Weight [g]
ZPMF-60-D11	ø20 to ø32	0.2
ZPMF-60-D18	ø40, ø50	0.5


Suction Cup ZP3C Series Mounting Bracket Assembly

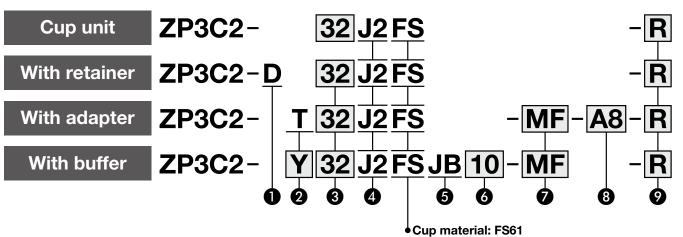
■ Adapter Assembly: Vacuum Inlet Direction Vertical T Type/ZP3C-T

Product part no.	ZP3C - T ① (C/B) FS □ - ② Cup diameter • Cup form (C: Flat type with ribs/B: Bellows type) • Connection thread (Male/Female thread) Cup material
Component parts	ZP3C-T (C/B) FSA ZP3C-T (C/B) FSBG Adapter (With O-ring) Cup B Mesh filter B Mesh filter

			Symbol	1 Cup diameter symbol								
				20	25	32	40	50				
unit)		M8 x 1	A8		ZP3CA-T3-A8	_						
gle unit) thread	Male	M10 x 1	A10		_	ZP3CA-T4-A10						
(Single	thread	G1/8	AG01		ZP3CA-T3-AG01		_	_				
Adapter (Sing Connection		G1/4	AG02		_	ZP3CA-T4-AG02						
Ada	Female	G1/8	BG01		ZP3CA-T3-BG01		_	- -				
⋖					_	ZP3CA-T4-BG02						
	Mesh filter (Single unit)				ZPMF-60-D11	ZPMF-60-D18						

■ Buffer Assembly: Vacuum Inlet Direction Vertical T Type/ZP3C-T, Lateral Y Type/ZP3C-Y

	Symbol		0	Cup diameter syml	ool			
	Symbol	20	25	32	40	50		
_	10		ZP3EB- (T/Y) JB10		ZP3EB- (T/Y) 1JB10			
A Buffer assembly 2 Buffer	20		ZP3EB- (T/Y) JB20	_				
(With mounting nut) stroke	30		ZP3EB- (T	T/Y) 1JB30				
	50		_		ZP3EB- (T	T/Y) 1JB50		
B Adapter (Single unit)			ZP3CA-T3-A8	ZP3CA-T4-A10				
© Mesh filter (Single unit)		ZPMF-60-D11	ZPMF-60-D18					
Mounting nut (Single unit)	M14 x 1		ZPNA-M14	_				
b Mounting nut (Single unit)	M18 x 1.5		_		NT-05			


Suction Cup

2.5-Stage Bellows Type

ZP3C2 Series

How to Order

Mounting

D	Direct mounting

2 Vacuum inlet direction

Nil	Cup unit
Т	Vertical
Y *1	Lateral

^{*1} Only selectable for the type with a

3 Cup diameter

G oup didiffotor							
20	ø20						
25	ø25						
32	ø32						
40	ø40						
50	ø50						

4 Cup form

J2	2.5-stage bellows type

5 Buffer specifications

JB	Rotating, With bushing
00	riolating, with bushing

6 Buffer stroke

Stroke		neter [mm]				
[mm]	ø 20, ø 25, ø 32	ø 40, ø 50				
10	•	•				
20	•	_				
30	•	•				
50	_	•				

Mesh filter

Nil	Without mesh filter
MF	With mesh filter

* For the type with a retainer, the filter will come with the product as standard.

Connection thread

Time	Throad	Cumbal		Cup diameter [mm]			
Type	Thread	Symbol	Size	ø 20 , ø 25 , ø 32	ø 40, ø 50		
		A8	M8 x 1	•	_		
	Male thread	A10	M10 x 1	_	•		
Thread		AG01	G1/8	•	_		
mounting		AG02	G1/4	_	•		
	Female thread	BG01	G1/8	•	_		
		BG02	G1/4	_	•		

^{*} Use the connection thread for the vacuum inlet.

9 Inner ring

Nil	Without inner ring
R	With inner ring

Specifications

Material Specifications

	Material	FS61 (Fluoro-based rubber)			
Cup	Color of rubber	Green			
	Rubber hardness (Shore A: ±5°)	65			
	Operating temperature range*1	0°C to 200°C			
	Ambient temperature	0°C to 150°C			
Innor ring	Material	POM			
Inner ring	Ambient temperature	0°C to 90°C			

^{*1} Surface temperature of the workpiece to be adsorbed

Cup Specifications

Cup diameter	Effective adsorption area	Adsorption force*1	Removal f	Internal capacity	
Cup diameter	[cm ²]	[N]	Without inner ring	With inner ring	[cm ³]
ø 20	1.7	10.2	13.5	18.8	4.3
ø 25	1.9	11.4	19.6	26.9	7.4
ø 32	2.6	15.8	31.6	34.8	13.0
ø 40	4.8	28.7	52.6	62.1	27.9
ø 50	8.1	48.9	74.2	89.7	50.6

^{*1} The adsorption force is a theoretical value calculated by: effective adsorption area x vacuum pressure (-60 [kPa]).

Adapter Specifications

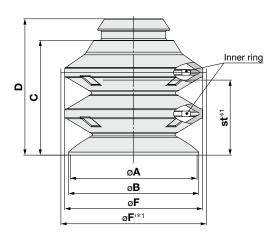
Connection	Male t	hread	Female thread					
Cup diameter	ø 20 , ø 25 , ø 32 ø 40 , ø 50		ø 20 , ø 25 , ø 32	ø 40, ø 50				
Connection thread	M8 x 1 G1/8	M10 x 1 G1/4	G1/8 G1/4					
Vacuum inlet	Use the connection thread.							

Buffer Specifications

Cup d	iameter		ø 20, ø 25, ø 32		ø 40, ø 50			
Non-rotating specification JB: Rotating, With bushing								
Stroke [mm]		10 20 30 10 30						
Connection threa	d		M14 x 1		M18 x 1.5			
Spring reaction	At 0 stroke		3.0		5.0			
force [N]	At full stroke	4.5	5.0	5.2	6.5	8.5	10.5	

Filter Specifications

<u> </u>				
Mounting	With adapter	With retainer*1		
Mesh	60	_		
Opening	250 μm	Hole diameter: 200 μm		


^{*1} For the type with a retainer, etched filters are used.

^{*2} The removal force is a measured value when adsorbing on a dry, flat, and smooth surface at -60 kPa of vacuum pressure.

ZP3C2 Series

Dimensions

Single unit

ZP3C2-32 J2FS-R

	Model											
	Oup diameter	Form	Cup material	2 Inner ring	A	В	С	D	F	F'*1	st*1	*2 Weight [g]
	20				23	23.5	19	25	23	25	13	5.2
	25				27.2	28	24	30	27.5	29.5	17.1	7.3
ZP3C2	32	J2	FS	Nil R	31.4	33	30	36	35	36.9	20.3	14.5
	40			n	41.4	42.5	37.5	44.5	45	47.5	25.5	28.9
	50				51.4	53	48.5	55.5	55	57.4	33.5	49.5

- *1 Achieved vacuum pressure: Reference at -85 [kPa]
- *2 This does not include the weight of the inner ring. For the type with inner rings, add the weight of the parts separately. (Refer to page 23.)

With retainer Direct mounting

Cup diameter Ø40

ZP3C2-D40J2FS-Inner ring ۵ ပ øΑ øΒ ø**F** ø**F**'*¹

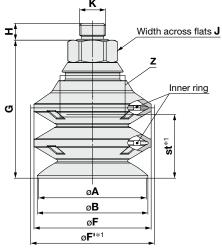
Cup diameter Ø20, 25, 32, 50

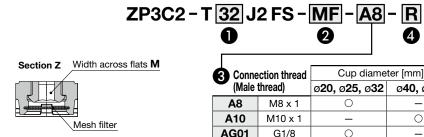
ZP3C2-D32J2FS-R

ZP3C2-D□J2FS-□ ٦

Section X

Recommended mounting plate dimensions

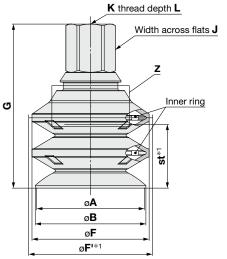

	Model															
	Mounting	Cup diameter	Form	Cup material	2 Inner ring	A	В	С	D	F	F ^{1*1}	AD	st*1	Min. hole diameter	*2 Weight [g]	
		20		FS			23	23.5	19	25	23	25		13		6.0
		25			Nil R	27.2	28	24	30	27.5	29.5	13.5	17.1	ø2.6	8.2	
ZP3C2	D	32	J2			31.4	33	30	36	35	36.9		20.3		15.4	
		40				41.4	42.5	37.5	46	45	47.5	20.5	25.5		32.8	
		50				51.4	53	48.5	55.5	55	57.4		33.5		53.4	

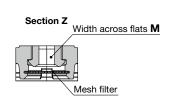

^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

^{*2} This does not include the weight of the inner ring. For the type with inner rings, add the weight of the parts separately. (Refer to page 23.)

Dimensions

With adapter Thread mounting: Male thread




(Conne	ction thread	Cup diame	ter [mm]
	(Male	thread)	ø 20, ø 25, ø 32	ø 40, ø 50
	A8	M8 x 1	0	_
	A10	M10 x 1	_	0
	AG01	G1/8	0	_
Ī	AG02	G1/4	_	0

			Mo	del															*2
	Vacuum inlet direction	Cup diameter	Form	Cup material	2 Mesh filter	3 Connection thread	4 Inner ring	A	В	F	F'*1	G	Н	J	К	М	st*1	Min. hole diameter	Weight [g]
		20				A8		23	23.5	23	25	35	6.5		M8 x 1		13		10.9
						AG01		23	23.3	23	25	32	7.5		G1/8		13		10.3
		25				A8		27.2	28	27.5	29.5	40	6.5	14	M8 x 1	1	17.1	ø4.1	13.1
		25				AG01		21.2	20	27.5	29.5	37	7.5	14	G1/8	4	17.1	04.1	12.4
ZP3C2	_	32	J2	FS	Nil	A8	Nil	31.4	33	35	36.9	46	6.5		M8 x 1		20.3		20.3
ZP302	'	32	JZ	гэ	MF	AG01	R	31.4	33	33	30.9	43	7.5		G1/8		20.3		19.6
		40				A10		41.4	42.5	45	47.5	53	6.5		M10 x 1		25.5		38.2
		40				AG02		41.4	42.5	45	47.5	55	10	17	G1/4	6	23.5	ø6.1	40.4
		50				A10		51.4	53	55	57.4	64	6.5	17	M10 x 1	O	33.5	ו.טש. ו	58.8
		50				AG02		31.4	55	35	57.4	04	10		G1/4		33.5		61.0

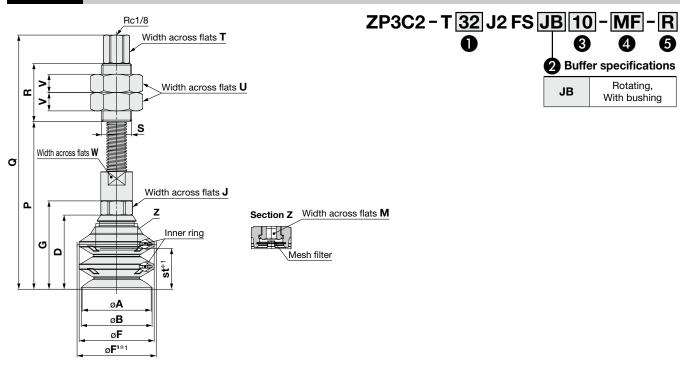
- *1 Achieved vacuum pressure: Reference at -85 [kPa]
- *2 This does not include the weights of the mesh filter and inner ring. For the type with a mesh filter and inner rings, add the weights of the parts separately. (Refer to page 23.)

With adapter Thread mounting: Female thread

		O dia	A [1
Conne	ction thread	Cup diame	ter [mm]
(Fema	le thread)	ø 20, ø 25, ø 32	ø 40, ø 50
BG01	G1/8	0	_
BG02	G1/4	_	0

ZP3C2-T32J2FS-MF-BG01-R

			Mo	odel															
	Vacuum inlet direction	Cup diameter	Form	Cup material	2 Mesh filter	3 Connection thread	4 Inner ring	A	В	F	F ^{1*1}	G	J	K	L	М	st*1	Min. hole diameter	*2 Weight [g]
		20						23	23.5	23	25	39.5					13		11.2
		25			Nil	BG01	Nil	27.2	28	27.5	29.5	44.5	14	G1/8	7.4	4	17.1	ø4.1	13.4
ZP3C2	Т	32	J2	FS	MF		R	31.4	33	35	36.9	50.5					20.3		20.5
		40			IVIT	BCOO	3G02 R 41	41.4	42.5	45	47.5	63	17	G1/4	11	6	25.5	~C 1	40.6
		50				BG02	G02 51	51.4	53	55	57.4	74	17	G 1/4	' '	0	33.5	ø6.1	61.2


^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

^{*2} This does not include the weights of the mesh filter and inner ring. For the type with a mesh filter and inner rings, add the weights of the parts separately. (Refer to page 23.)

ZP3C2 Series

Dimensions

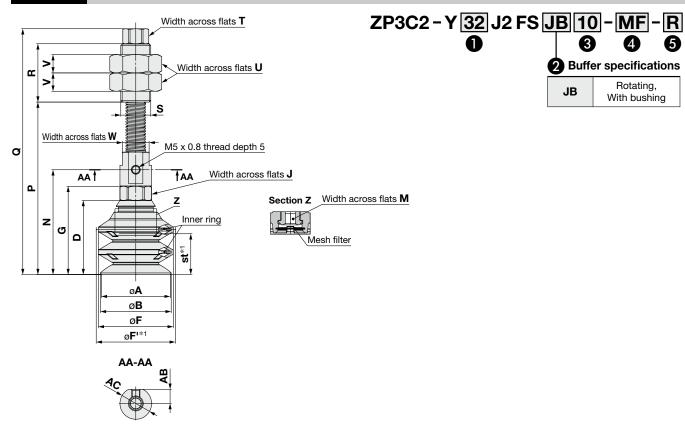
With buffer Vacuum inlet direction: Vertical

				Mode	Ī																						
	Vacuum inlet direction					3 Buffer stroke		5 Inner ring	A	В	D	F	F'*1	G	J	М	P	Q	R	S	Т	U	٧	w		Min. hole dia.	*2 Weight [g]
						10											81	126									84.4
		20				20			23	23.5	25	23	25	35			93	138							13		88.8
						30											106	151									93.6
						10											86	131									86.6
		25				20			27.2	28	30	27.5	29.5	40	14	4	98	143	30	M14 x 1	12	19	4	13	17.1		91.0
						30											111	156									95.7
						10	NI:I	NI:I									92	137									93.7
ZP3C2	T	32	J2	FS	JB	20	Nil MF	Nil R	31.4	33	36	35	36.9	46			104	149							20.3	ø3	98.1
						30											117	162									102.9
						10											100.5	152.5									229.3
		40				30			41.4	42.5	44.5	45	47.5	53			125.5	177.5							25.5		243.8
						50									17	6	145.5	197.5	35	M18 x 1.5	14	27	11	16			255.3
						10									17		111.5	163.5	33	WI 10 X 1.5	14	21		10			249.9
		50				30			51.4	53	55.5	55	57.4	64			136.5	188.5							33.5		264.4
						50											156.5	208.5									275.8

^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

^{*2} This does not include the weights of the mesh filter and inner ring. For the type with a mesh filter and inner rings, add the weights of the parts separately. (Refer to page 23.)

JB


2 Buffer specifications

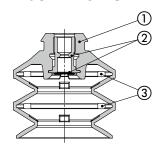
Rotating,

With bushing

Dimensions

With buffer Vacuum inlet direction: Lateral

				Model																										
	Vacuum inlet direction					3 Buffer stroke		5 Inner ring	A	В	D	F	F ^{1*1}	G	J	М	N	P	Q	R	S	Т	U	V	w	ΑВ	AC	st*1	Min. hole dia.	*2 Weight [g]
						10												81	119											84.9
		20				20			23	23.5	25	23	25	35			44	93	131									13		90.0
						30												106	144											95.4
						10												86	124											87.1
		25				20			27.2	28	30	27.5	29.5	40	14	4	49	98	136	30	M14 x 1	12	19	4	14	6.5	15	17.1	ø4.1	92.2
						30												111	149											97.6
						10	NI:I											92	130											94.2
ZP3C2	Y	32	J2	FS	JB	20	Nil MF	Nil R	31.4	33	36	35	36.9	46			55	104	142									20.3		99.3
						30	1411	''										117	155											104.8
						10												103.5	147.5											227.7
		40				30			41.4	42.5	44.5	45	47.5	53			62.9	128.5	172.5									25.5		243.6
						50									17			148.5	192.5	25	M40 4 F	4.4	0.7		10	0.5	10		1	256.1
						10									' '	6		114.5	158.5	35	M18 x 1.5	14	21	1 1	סו	8.5	19		ø6.1	248.3
		50				30			51.4	53	55.5	55	57.4	64			73.9	139.5	183.5	1								33.5		264.1
						50												159.5	203.5											276.7

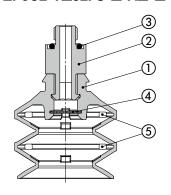

^{*1} Achieved vacuum pressure: Reference at -85 [kPa]

^{*2} This does not include the weights of the mesh filter and inner ring. For the type with a mesh filter and inner rings, add the weights of the parts separately. (Refer to page 23.)

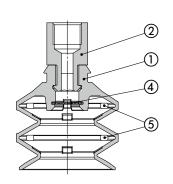
Suction Cup **ZP3C2** Series **Construction**

With retainer

ZP3C2-D□J2FS-□



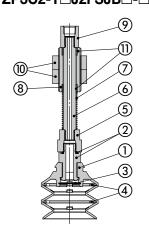
Component Parts


No.	Description	Mat	erial				
1	Cup	FS61 (Fluoro-	based rubber)				
2	Retainer assembly	Aluminum alloy (Anodized)	Etched filter: Stainless steel				
3	Inner ring	POM					

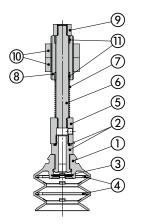
With adapter

ZP3C2-T□J2FS-□-A□-□

ZP3C2-T□J2FS-□-B□-□



Component Parts


No.	Description	Material					
1	Cup	FS61 (Fluoro-based rubber)					
2	Adapter	Aluminum alloy (Anodized)					
3	O-ring	NBR					
4	Mesh filter	Stainless steel					
5	Inner ring	POM					

With buffer

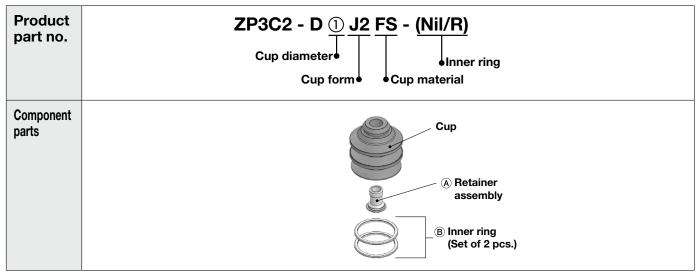
ZP3C2-T□**J2FSJB**□-□-□

ZP3C2-Y□J2FSJB□-□-□

Component Parts

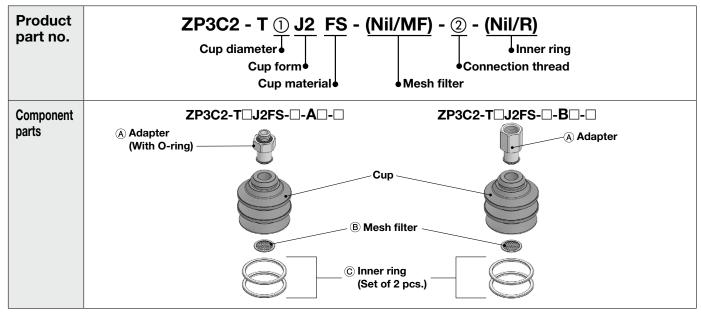
No.	Description	Mat	erial						
1	Cup	FS61 (Fluoro-based rubber) Aluminum alloy O-ring:							
2	Adapter assembly	Aluminum alloy (Anodized)	O-ring: NBR						
3	Mesh filter	Stainles	ss steel						
4	Inner ring	POM							
5	Adapter	Aluminum alloy (Anodized)							
6	Piston rod	Structural steel (Hard chrome plating)							
7	Return spring	Stainles	ss steel						
8	Buffer body		ass nickel plating)						
9	Buffer adapter	Brass (Electroless nickel plating)							
10	Nut	J	eel romated)						
11	Bushing	_							

Replacement Parts Mesh Filter Unit

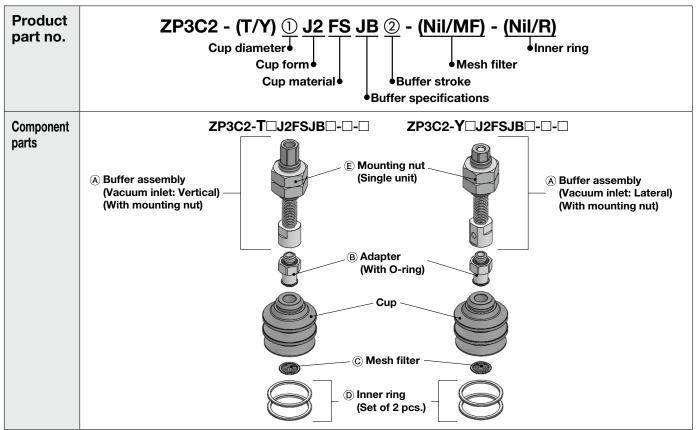

Part no.	Applicat	ole cup diame	ter [mm]	Weight [g]
Part no.	ø 20, ø 25	ø 32	ø 40 , ø 50	weight [g]
ZPMF-60-D9	•	_	_	0.2
ZPMF-60-D11	_	•	_	0.2
ZPMF-60-D18	_	_	•	0.5

Inner Ring (Set of 2 pcs.)

iiiioi iiiiig (Got Gi	- poo.,	
Part no.	Applicable cup diameter [mm]	Weight [g]
ZP3C2-20-R	ø20	0.4
ZP3C2-25-R	ø25	0.6
ZP3C2-32-R	ø32	1
ZP3C2-40-R	ø40	1.4
ZP3C2-50-R	ø50	2.6


Suction Cup ZP3C2 Series Mounting Bracket Assembly

Retainer Assembly


			1 Cup diameter		
	20	25	32	40	50
A Retainer assembly	ZP3C	2A-D2	ZP3C2A-D3	ZP3C	2A-D4
B Inner ring (Set of 2 pcs.)	ZP3C2-20-R	ZP3C2-25-R	ZP3C2-32-R	ZP3C2-40-R	ZP3C2-50-R

■ Adapter Assembly: Vacuum Inlet Direction Vertical T Type/ZP3C2-T

Symbo			Symbol	① Cup diameter				
			Symbol	20	25	32	40	50
unit)	990	M8 x 1.0	A8	ZP3C2A-T3-A8			-	_
n əle	thread Male	M10 x 1.0	A10	- ZP3C2A-T4-A10			-T4-A10	
(Single	thread	G1/8	AG01	ZP3C2A-T3-AG01			_	
oter	thread Female	G1/4	AG02	-			ZP3C2A-T4-AG02	
Adapter	Female thread	G1/8	BG01	ZP3C2A-T3-BG01			_	
		G1/4	BG02	-			ZP3C2A-T4-BG02	
Mesh filter (Single unit)				ZPMF-60-D9 ZPMF-60-D11		ZPMF-60-D18		
© Inner ring (Set of 2 pcs.)				ZP3C2-20-R	ZP3C2-25-R	ZP3C2-32-R	ZP3C2-40-R	ZP3C2-50-R

■ Buffer Assembly: Vacuum Inlet Direction Vertical T Type/ZP3C2-T, Lateral Y Type/ZP3C2-Y

		Symbol	1 Cup diameter				
			20	25	32	40	50
	2 Buffer stroke	10	ZP3EB- (T/Y) JB10			ZP3EB- (T/Y) 1JB10	
(A) Buffer assembly		20	ZP3EB- (T/Y) JB20			_	
(With mounting nut)		30	ZP3EB- (T/Y) JB30			ZP3EB- (T/Y) 1JB30	
,		50	-			ZP3EB- (T/Y) 1JB50	
B Adapter (Single unit)			ZP3C2A-T3-A8			ZP3C2A-T4-A10	
© Mesh filter (Single unit)			ZPMF-60-D9 ZPMF-60-D11		ZPMF-60-D18		
D Inner ring (Set of 2 pcs.)			ZP3C2-20-R	ZP3C2-25-R	ZP3C2-32-R	ZP3C2-40-R	ZP3C2-50-R
M14 x 1			ZPNA-M14		_		
E Mounting nut (Single unit)		M18 x 1.5	_		NT-05		

ZP3C ☐ Series Suction Cup/Specific Product Precautions

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For vacuum equipment precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smcworld.com

Design

 When handling workpieces that are permeable or prone to vacuum leakage, there will be a drop in vacuum pressure.

Make sure to take the drop in vacuum pressure into account when selecting the appropriate products.

Check whether the target vacuum pressure can be reached with the actual equipment before use.

Mounting

1. When mounting the product, tighten with the tightening torque shown in the table below.

If excessive or insufficient tightening torque is applied, sealing failure or loose screws may result.

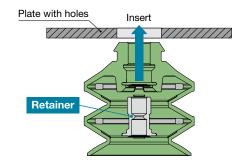
When using a product equipped with a buffer, if the buffer is tightened to a torque beyond the appropriate tightening torque range, the buffer may malfunction.

With Adapter (Male thread type)

Model	Connection thread size	Proper tightening torque [N·m]			
ZP3C□-T□(C/B/J2)FS-□-A8-□	M8 x 1.0	4.5 to 5.5			
ZP3C□-T□(C/B/J2)FS-□-A10-□	M10 x 1.0	8 to 10			
ZP3C□-T□(C/B/J2)FS-□-AG01-□	G1/8	3 to 5			
ZP3C□-T□(C/B/J2)FS-□-AG02-□	G1/4	8 to 12			

With Adapter (Female thread type)

Model	Connection thread size	Proper tightening torque [N·m]	
ZP3C□-T□(C/B/J2)FS-□-BG01-□	G1/8	3 to 5	
ZP3C□-T□(C/B/J2)FS-□-BG02-□	G1/4	8 to 12	


With Buffer

Model	Connection thread size	Proper tightening torque [N·m]	
ZP3C□-(T/Y)(20 to 32)(C/B/J2)FSJB□-□-□	M14 x 1	6.5 to 7.5	
ZP3C□-(T/Y)(40/50)(C/B/J2)FSJB□-□-□	M18 x 1.5	28 to 32	

How to Mount/Remove the Retainer

1. Mounting

After mounting the cup onto the plate, insert the retainer.

2. Removing

- <Tool examples>
- · Relay pliers
- · End nippers

Handling

1. Periodically inspect the mesh filter.

An adsorbing malfunction may be caused by the clogging of the mesh filter.

2. When the suction cup is pressed, make sure it stays within the stroke range.

If this product is used with a stroke exceeding the maximum stroke, the cup may be broken or may reach the end of its service life earlier.

3. Suction cups are consumable. Please replace them when cracks or deformation is confirmed during periodic maintenance.

⚠ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

⚠ Danger: Danger indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.

⚠ Warning: Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.

Caution: Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

*1) ISO 4414: Pneumatic fluid power - General rules and safety requirements for systems and their components ISO 4413: Hydraulic fluid power - General rules and safety requirements for systems and their components IEC 60204-1: Safety of machinery - Electrical equipment of machines - Part 1: General requirements ISO 10218-1: Robots and robotic devices - Safety requirements for industrial robots - Part 1:Robots

.⚠Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.

Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained

- 3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
- 4. SMC products cannot be used beyond their specifications. They are not developed, designed, and manufactured to be used under the following conditions or environments. Use under such conditions or environments is not allowed.
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Use for nuclear power, railways, aviation, space equipment, ships, vehicles, military application, equipment affecting human life, body, and property, combustion equipment, entertainment equipment, emergency shut-off circuits, press clutches, brake circuits, safety equipment, etc., and use for applications that do not conform to standard specifications such as catalogs and operation manuals.
 - 3. Use for interlock circuits, except for use with double interlock such as installing a mechanical protection function in case of failure. Please periodically inspect the product to confirm that the product is operating properly.

⚠ Caution

SMC develops, designs, and manufactures products to be used for automatic control equipment, and provides them for peaceful use in manufacturing industries.

Use in non-manufacturing industries is not allowed.

Products SMC manufactures and sells cannot be used for the purpose of transactions or certification specified in the Measurement Act of each country. The new Measurement Act prohibits use of any unit other than SI units in

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".

Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first.*2) Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
 - *2) Suction cups (Vacuum pads) are excluded from this 1 year warranty. A suction cup (vacuum pad) is a consumable part, so it is warranted for a year after it is delivered.

Also, even within the warranty period, the wear of a product due to the use of the suction cup (vacuum pad) or failure due to the deterioration of rubber material are not allowed by the limited warranty.

Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- 2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

↑ Safety Instructions | Be sure to read the "Handling Precautions for SMC Products" (M-E03-3) and "Operation Manual" before use.